Diberdayakan oleh Blogger.
RSS

APLIKASI PADA LEMARI ES

Lemari Es (Kulkas)

            Adalah suatu unit mesin pendingin di pergunakan dalam rumah tangga, untuk menyimpan bahan makanan atau minuman. Untuk menguapkan bahan pendingin di perlukan panas.              
Lemari es memanfaatkan sifat ini. Bahan pendingin yang digunakan sudah menguap pada suhu -200C. panas yang diperlukan untuk penguapan ini diambil dari ruang pendingin, karena itu suhu dalam ruangan ini akan turun. Penguapan berlangsung dalam evaporator yang ditempatkan dalam ruang pendingin. Karena sirkulasi udara, ruang pendingin ini akan menjadi dingin seluruhnya.



              Lemari Es merupakan kebalikan mesin kalor. Lemari Es beroperasi untuk mentransfer kalor keluar dari lingkungan yang sejuk kelingkungn yang hangat. Dengan melakukan kerja W, kalor diambil dari daerah temperatur rendah TL (katakanlah, di dalam lemari Es), dan kalor yang jumlahnya lebih besar dikeluarkan pada temperature tinggi Th (ruangan).
Sistem lemari Es yang khas, motor kompresor memaksa gas pada temperatur tinggi melalui penukar kalor (kondensor) di dinding luar lemari Es dimana Qh dikeluarkan dan gas mendingin untuk menjadi cair. Cairan lewat dari daerah yang bertekanan tinggi , melalui katup, ke tabung tekanan rendah di dinding dalam lemari es, cairan tersebut menguap pada tekanan yang lebih rendah ini dan kemudian menyerap kalor (QL) dari bagian dalam lemari es. Fluida kembali ke kompresor dimana siklus dimulai kembali.
             Lemari Es yang sempurna (yang tidak membutuhkan kerja untuk mengambil kalor dari daerah temperatur rendah ke temperatur tinggi) tidak mungkina ada. Ini merupakan pernyataan Clausius mengenai hukum Termodinamika kedua. Kalor tidak mengalir secara spontan dari benda dingin ke benda panas. Dengan demikian tidak akan ada lemari Es yang sempurna.


    Cara Kerja Instalasi Mesin Kulkas


            Setelah ke dalam kompresor diisi gas freon , maka gas itu dapat dikeluarkan kembali dari silinder oleh kompresor untuk diteruskan ke kondensor, setelah itu menuju saringan, setelah itu menuju ke pipa kapiler dan akan mengalami penahanan. Adanya penahanan ini akan menimbulkan suatu tekanan di dalam pipa kondensor. Sebagai akibatnya gas tersebut menjadi cairan di dalam pipa kondensor. Dari pipa kapiler cairan tersebut terus ke evaporator dan terus menguap untuk menyerap panas. Setelah menjadi gas terus dihisap lagi ke kompresor. Demilian siklus kembali terulang.


Jenis Aliran Udara Pendingin


Jenis aliran udara pada lemari es ada 2 macam :
1.      Secara alamiah tanpa fan motor, di dalam lemari es udara dingin pada bagian atas dekat evaporator mempunyai berat jenis lebih besar. Dari beratnya sendiri udara dingin akan mengalir ke bagian bawah lemari es. Udara panas pada bagian bawah lemari es karena berat jenisnya lebih kecil dan di desak oleh udara dingin dari atas, akan mengalir naik ke atas menuju evaporator. Udara panas oleh evaporator didinginkan menjadi dingin dan berat lalu mengalir ke bawah lagi. Demikianlah terjadi terus menerus secara alamiah.
2.      Aliran udara di dalam lemari es dengan di tiup oleh fan motor, lemari es yang memakai fan motor, dapat terjadi sirkulasi udara dingin yang kuat dan merata ke semua bagian dari lemari es. Udara panas di dalam lemari es dihisap oleh fan motor lalu dialirkan melalui evaporator. Udara menjadi dingin dan oleh fan motor di dorong melalui saluran atau cerobong udara, di bagi merata ke semua bagian dalam lemari es

Mesin turbojet menjadi salah satu jenis mesin penggerak pesawat terbang. Mesin penggerak pesawat terbang yang juga banyak digunakan pada saat ini selain turbojet yaituturboprop danturbofan. Mesin turbojet sangat umum digunakan pada pesawat-pesawat tempur yang membutuhkan kecepatan tinggi. Dan sekalipun mesin ini tidak lazim digunakan pada kendaraan darat, namun kendaraan untuk pemecahan rekor kecepatan darat menggunakan mesin ini. 20140326-120211 PM.jpg Mesin Turbojet Pesawat F-16 Fighting Falcon Mesin turbojet merupakan penerapan dari siklus termodinamika Brayton (baca artikel siklus brayton berikut). Siklus Brayton terbagi kedalam empat tahapan proses yakni proses kompresi isentropik, proses pembakaran isobarik, proses ekspansi isentropik, serta proses pembuangan panas. Keempat tahapan proses inilah yang menjadi prinsip dasar dari mesin turbojet. Prinsip kerja mesin turbojet tidak dapat terlepas dengan komponen-komponen kerjanya. Komponen utama dari mesin turbojet yaitu kompresor, ruang bakar (combustion chamber), turbin, dan nozzle. Tiga tahapan awal dari siklus brayton di atas terjadi pada komponen-komponen mesin turbojet tersebut. Sedangkan proses siklus brayton yang terakhir yakni proses pembuangan panas, terjadi di udara atmosfer. 20140326-060158 PM.jpg Skema Mesin Turbojet (Sumber) Mesin turbojet menggunakan udara atmosfer sebagai fluida kerja. Udara masuk ke dalam sistem turbojet melalui sisi inlet kompresor. Saat melewati kompresor, udara dikompresi oleh beberapa tingkatan sudu kompresor yang tersusun secara aksial. Pada ujung akhir kompresor, penampang casingberbentuk difuser untuk menambah tekanan keluaran kompresor. Umumnya, tekanan udara keluaran kompresor turbojet mencapai rasio 15:1. Selain itu, ada sebagian udara bertekanan yang tidak diteruskan masuk ke ruang bakar. Sebagian kecil udara bertekanan tersebut diekstraksi untuk berbagai kebutuhan seperti pendinginan stator turbin, air conditioning, dan untuk sistem pencegah terbentuknya es di sisi inlet turbin. Selanjutnya, udara terkompresi keluaran kompresor masuk ke ruang bakar atau combustor. Bahan bakar (avtur contohnya) diinjeksikan ke dalam ruang bakar ini. Sistemcombustor memiliki desain khusus sehingga aliran udara bertekanan akan mengkabutkan bahan bakar. Campuran bahan bakar dan udara dipicu untuk terbakar di dalam ruang bakar ini. Proses pembakaran yang terjadi seolah-olah menghasilkan efek ledakan yang membuat udara bertekanan memuai dengan sangat cepat. Pemuaian udara yang terjadi membuat udara panas hasil pembakaran berekspansi secara bebas ke arah turbin. 20140327-074137 PM.jpg 20140318-033416 PM.jpg Potongan Penampang Combustor dan Bagian-bagiannya Udara panas hasil pembakaran di combustor akan menuju sisi turbin. Turbin tersusun atas beberapa tingkatan sudu rotor dan stator. Sudu-sudu turbin berfungsi sebagai nozzle-nozzle kecil yang akan mengkonversikan energi panas di dalam udara pembakaran menjadi energi kinetik. Sudu pada sisi rotor turbin yang dapat berputar mengkonversikan energi kinetik ini menjadi energi mekanis putaran poros turbojet. Karena turbin dan kompresor berada pada satu poros, maka energi putar poros digunakan untuk memutar kompresor turbojet. Berbeda dengan mesin turbin gas pada PLTG yang keseluruhan energi panas udara hasil pembakaran dikonversikan menjadi putaran poros, pada mesin turbojet sebagian besar energi panas justru tidak digunakan untuk memutar turbin. Sebagian besar energi panas ini dikonversikan menjadi daya dorong (thrust) mesin yang dibutuhkan untuk penggerak pesawat terbang. Untuk mengkonversi energi panas udara menjadi daya dorong, pada sisi keluaran turbin mesin jet terdapat nozzle besar dengan penampang selebar mesin jet itu sendiri. Nozzle besar ini berfungsi untuk merubah energi panas udara menjadi kecepatan tinggi sebagai komponen daya dorong. 20140328-031047 PM.jpg Prinsip Nozzel Konvergen-Divergen Digunakan Pada ExhaustMesin Turbojet (Sumber) Sebuah pesawat jet yang mampu mencapai kecepatan supersonik (melebihi kecepatan suara) pasti exhaust mesin jetnya menggunakan nozzle konvergen-divergen. Nozzle konvergen-divergen adalah sebuah pipa yang mengalami pencekikan aliran di tengah-tengahnya, menghasilkan bentuk seperti jam pasir yang tidak simetris antara sisi inlet dan outlet nozzle. Nozzle ini berfungsi untuk mengakselerasi gas panas dengan tekanan tinggi sehingga mencapai kecepatan supersonik. Bentuk nozzle yang sedemikian rupa membuat energi panas yang mendorong aliran udara terkonversi secara maksimal menjadi energi kinetik. Penampang cekik dari nozzle pada mesin jet bertujuan untuk menciptakan restriksi aliran udara panas sehingga tekanan udara meningkat, yang biasanya bahkan mendekati chockingatau berhentinya aliran udara. Lalu aliran udara panas yang tercekik ini secara tiba-tiba diekspansikan hingga mencapai atau paling tidak mendekati tekanan atmosfer. Ekspansi ini diakibatkan oleh bentuk nozzle divergen setelah bagian cekiknya. Ekspansi cepat hingga mencapai tekanan atmosfer inilah yang mengkonversikan energi panas udara menjadi daya dorong pesawat. 20140328-075900 PM.jpg Exhaust Nozzle Dengan Sistem Vektor Fleksibel (Sumber) Dapat disimpulkan bahwa energi untuk mendorong pesawat berasal dari temperatur dan tekanan udara panas hasil pembakaran di dalam combustor. Udara hasil pembakaran inilah yang mengakselerasi pesawat jet menjadi kecepatan supersonik. Akselerasi yang diberikan oleh udara panas tersebut tergantung oleh beberapa kondisi berikut: Tekanan dan temperatur udara panas di titik masuk nozzle. Tekanan ambien keluaran nozzle. Efisiensi dari proses ekspansi. Efisiensi ini meliputi kerugian atas adanya gesekan, atau adanya kemungkinan kebocoran pada nozzle. Gaya Dorong Mesin Turbojet Berikut adalah rumus perhitungan gaya dorong netto mesin turbojet: F_{N}=\left( \dot{m}_{air}+\dot{m}_{fuel}\right)v_{e}-\dot{m}_{air} v Dimana: \dot{m}_{air} = laju massa aliran udara di dalam mesin jet. \dot{m}_{fuel} = laju massa aliran bahan bakar di dalam mesin jet. v_{e} = kecepatan keluaran fluida jet. v = kecepatan udara masuk ke inlet mesin jet.

Copy and WIN : http://ow.ly/KfYkt
Mesin turbojet menjadi salah satu jenis mesin penggerak pesawat terbang. Mesin penggerak pesawat terbang yang juga banyak digunakan pada saat ini selain turbojet yaituturboprop danturbofan. Mesin turbojet sangat umum digunakan pada pesawat-pesawat tempur yang membutuhkan kecepatan tinggi. Dan sekalipun mesin ini tidak lazim digunakan pada kendaraan darat, namun kendaraan untuk pemecahan rekor kecepatan darat menggunakan mesin ini. 20140326-120211 PM.jpg Mesin Turbojet Pesawat F-16 Fighting Falcon Mesin turbojet merupakan penerapan dari siklus termodinamika Brayton (baca artikel siklus brayton berikut). Siklus Brayton terbagi kedalam empat tahapan proses yakni proses kompresi isentropik, proses pembakaran isobarik, proses ekspansi isentropik, serta proses pembuangan panas. Keempat tahapan proses inilah yang menjadi prinsip dasar dari mesin turbojet. Prinsip kerja mesin turbojet tidak dapat terlepas dengan komponen-komponen kerjanya. Komponen utama dari mesin turbojet yaitu kompresor, ruang bakar (combustion chamber), turbin, dan nozzle. Tiga tahapan awal dari siklus brayton di atas terjadi pada komponen-komponen mesin turbojet tersebut. Sedangkan proses siklus brayton yang terakhir yakni proses pembuangan panas, terjadi di udara atmosfer. 20140326-060158 PM.jpg Skema Mesin Turbojet (Sumber) Mesin turbojet menggunakan udara atmosfer sebagai fluida kerja. Udara masuk ke dalam sistem turbojet melalui sisi inlet kompresor. Saat melewati kompresor, udara dikompresi oleh beberapa tingkatan sudu kompresor yang tersusun secara aksial. Pada ujung akhir kompresor, penampang casingberbentuk difuser untuk menambah tekanan keluaran kompresor. Umumnya, tekanan udara keluaran kompresor turbojet mencapai rasio 15:1. Selain itu, ada sebagian udara bertekanan yang tidak diteruskan masuk ke ruang bakar. Sebagian kecil udara bertekanan tersebut diekstraksi untuk berbagai kebutuhan seperti pendinginan stator turbin, air conditioning, dan untuk sistem pencegah terbentuknya es di sisi inlet turbin. Selanjutnya, udara terkompresi keluaran kompresor masuk ke ruang bakar atau combustor. Bahan bakar (avtur contohnya) diinjeksikan ke dalam ruang bakar ini. Sistemcombustor memiliki desain khusus sehingga aliran udara bertekanan akan mengkabutkan bahan bakar. Campuran bahan bakar dan udara dipicu untuk terbakar di dalam ruang bakar ini. Proses pembakaran yang terjadi seolah-olah menghasilkan efek ledakan yang membuat udara bertekanan memuai dengan sangat cepat. Pemuaian udara yang terjadi membuat udara panas hasil pembakaran berekspansi secara bebas ke arah turbin. 20140327-074137 PM.jpg 20140318-033416 PM.jpg Potongan Penampang Combustor dan Bagian-bagiannya Udara panas hasil pembakaran di combustor akan menuju sisi turbin. Turbin tersusun atas beberapa tingkatan sudu rotor dan stator. Sudu-sudu turbin berfungsi sebagai nozzle-nozzle kecil yang akan mengkonversikan energi panas di dalam udara pembakaran menjadi energi kinetik. Sudu pada sisi rotor turbin yang dapat berputar mengkonversikan energi kinetik ini menjadi energi mekanis putaran poros turbojet. Karena turbin dan kompresor berada pada satu poros, maka energi putar poros digunakan untuk memutar kompresor turbojet. Berbeda dengan mesin turbin gas pada PLTG yang keseluruhan energi panas udara hasil pembakaran dikonversikan menjadi putaran poros, pada mesin turbojet sebagian besar energi panas justru tidak digunakan untuk memutar turbin. Sebagian besar energi panas ini dikonversikan menjadi daya dorong (thrust) mesin yang dibutuhkan untuk penggerak pesawat terbang. Untuk mengkonversi energi panas udara menjadi daya dorong, pada sisi keluaran turbin mesin jet terdapat nozzle besar dengan penampang selebar mesin jet itu sendiri. Nozzle besar ini berfungsi untuk merubah energi panas udara menjadi kecepatan tinggi sebagai komponen daya dorong. 20140328-031047 PM.jpg Prinsip Nozzel Konvergen-Divergen Digunakan Pada ExhaustMesin Turbojet (Sumber) Sebuah pesawat jet yang mampu mencapai kecepatan supersonik (melebihi kecepatan suara) pasti exhaust mesin jetnya menggunakan nozzle konvergen-divergen. Nozzle konvergen-divergen adalah sebuah pipa yang mengalami pencekikan aliran di tengah-tengahnya, menghasilkan bentuk seperti jam pasir yang tidak simetris antara sisi inlet dan outlet nozzle. Nozzle ini berfungsi untuk mengakselerasi gas panas dengan tekanan tinggi sehingga mencapai kecepatan supersonik. Bentuk nozzle yang sedemikian rupa membuat energi panas yang mendorong aliran udara terkonversi secara maksimal menjadi energi kinetik. Penampang cekik dari nozzle pada mesin jet bertujuan untuk menciptakan restriksi aliran udara panas sehingga tekanan udara meningkat, yang biasanya bahkan mendekati chockingatau berhentinya aliran udara. Lalu aliran udara panas yang tercekik ini secara tiba-tiba diekspansikan hingga mencapai atau paling tidak mendekati tekanan atmosfer. Ekspansi ini diakibatkan oleh bentuk nozzle divergen setelah bagian cekiknya. Ekspansi cepat hingga mencapai tekanan atmosfer inilah yang mengkonversikan energi panas udara menjadi daya dorong pesawat. 20140328-075900 PM.jpg Exhaust Nozzle Dengan Sistem Vektor Fleksibel (Sumber) Dapat disimpulkan bahwa energi untuk mendorong pesawat berasal dari temperatur dan tekanan udara panas hasil pembakaran di dalam combustor. Udara hasil pembakaran inilah yang mengakselerasi pesawat jet menjadi kecepatan supersonik. Akselerasi yang diberikan oleh udara panas tersebut tergantung oleh beberapa kondisi berikut: Tekanan dan temperatur udara panas di titik masuk nozzle. Tekanan ambien keluaran nozzle. Efisiensi dari proses ekspansi. Efisiensi ini meliputi kerugian atas adanya gesekan, atau adanya kemungkinan kebocoran pada nozzle. Gaya Dorong Mesin Turbojet Berikut adalah rumus perhitungan gaya dorong netto mesin turbojet: F_{N}=\left( \dot{m}_{air}+\dot{m}_{fuel}\right)v_{e}-\dot{m}_{air} v Dimana: \dot{m}_{air} = laju massa aliran udara di dalam mesin jet. \dot{m}_{fuel} = laju massa aliran bahan bakar di dalam mesin jet. v_{e} = kecepatan keluaran fluida jet. v = kecepatan udara masuk ke inlet mesin jet.

Copy and WIN : http://ow.ly/KfYkt

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 komentar:

Posting Komentar