Diberdayakan oleh Blogger.
RSS

SISTEM REFRIGERASI

Sistem refrigerasi sangat menunjang peningkatan kualitas hidup manusia. Kemajuan dalam bidang refrigerasi akhir-akhir ini adalah akibat dari perkembangan sistem kontrol yang menunjang kinerja dari sistem refrigerasi. Apalikasi dari sistem refrigerasi tidak terbatas, tetapi yang paling banyak digunakan adalah untuk pengawetan makanan dan pendingin suhu, misalnya lemasi es, freezer, cold strorage, air conditioner/AC Window, AC split dan AC mobil. Dengan perkembangan teknologi saat ini, refrigeran (bahan pendingin) yang di pasarkan dituntut untuk ramah lingkungan, di samping aspek teknis lainnya yang diperlukan. Apapun refrigeran yang dipakai, semua memiliki kelebihan dan kekurangan masing-masing oleh karena itu, diperlukan kebijakan dalam memilih refrigerant yang paling aman berdasarkan kepentingan saat ini dan masa yang akan datang.
Siklus Refregerasi
Prinsip terjadinya suatu pendinginan di dalam sistem refrigerasi adalah penyerapan kalor oleh suatu zat pendingin yang dinamakan refrigeran. Karena kalor yang berada di sekeliling refrigeran diserap, akibatnya refrigeran akan menguap sehingga temperatur di sekitar refrigeran akan bertambah dingin. Hal ini dapat terjadi mengingat penguapan memerlukan kalor.
Di dalam suatu alat pendingin (misal lemari es) kalor diserap di evaporator dan dibuang ke kondensor. Uap refrigeran yang berasal dari evaporator yang bertekanan dan bertemperatur rendah masuk ke kompresor melalui saluran hisap. Di kompresor uap refrigeran tersebut dimampatkan, sehingga ketika ke luar dari kompresor uap refrigeran akan bertekanan dan bersuhu tinggi, jauh lebih tinggi dibanding temperatur udara sekitar. Kemudian uap menuju ke kondensor melalui saluran tekan. Di kondensor uap tersebut akan melepaskan kalor, sehingga akan berubah fasa dari uap menjadi cair (terkondensasi) dan selanjutnya cairan tersebut terkumpul di penampungan cairan refrigeran. Cairan refrigeran yang bertekanan tinggi mengalir dari penampung refrigean ke katup ekspansi. Keluar dari katup ekspansi tekanan menjadi sangat berkurang dan akibatnya cairan refrigeran bersuhu sangat rendah. Pada saat itulah cairan tersebut mulai menguap yaitu di evaporator, dengan menyerap kalor dari sekitarnya hingga cairan refrigeran habis menguap. Akibatnya evaporator menjadi dingin. Bagian inilah yang dimanfaatkan untuk mengawetkan bahan makanan atau untuk mendinginkan ruangan. Kemudian uap refrigeran akan dihisap oleh kompresor dan demikian seterusnyaproses-proses tersebut berulang kembali.
Komponen Sistem Refrigerasi  
Mekanik mesin pendingin terdiri dari beberapa komponen yang masing-masing dihubungkan dengan menggunakan pipa-pipa tembaga atau selang pada akhirnya merupakan sebuah system yang bekerja secara serempak (simultan).
1. Kompresor
Kompresor merupakan jantung dari sistem refrigerasi. Pada saat yang sama kompresor menghisap uap refrigeran yang bertekanan rendah dari evaporator dan mengkompresinya menjadi uap bertekanan tinggi sehingga uap akan tersirkulasi.
Kebanyakan kompresor yang dipakai saat ini adalah dari jenis torak. Ketika torak bergerak turun dalam silinder, katup hisap terbuka dan uap refrigerant masuk dari saluran hisap ke dalam silinder. Pada saat torak bergerak ke atas, tekanan uap di dalam silinder meningkat dan katup hisap menutup, sedangkan katup tekan akan terbuka, sehingga uap refrigean akan ke luar dari silinder melalui saluran tekan menuju ke kondensor.
2. Kondensor
Kondensor juga merupakan salah satu komponen utama dari sebuah mesin pendingin. Pada kondensor terjadi perubahan wujud refrigeran dari uap super-heated (panas lanjut) bertekanan tinggi ke cairan sub-cooled (dingin lanjut) bertekanan tinggi. Agar terjadi perubahan wujud refrigeran (dalam hal ini adalah pengembunan/condensing), maka kalor harus dibuang dari uap refrigeran.
Kalor/panas yang akan dibuang dari refrigeran tersebut berasal dari :
1. Panas yang diserap dari evaporator, yaitu dari ruang yang didinginkan
2. Panas yang ditimbulkan oleh kompresor selama bekerja
Fungsi kondensor adalah untuk merubah refrigeran gas menjadi cair dengan jalan membuang kalor yang dikandung refrigeran tersebut ke udara sekitarnya atau air sebagai medium pendingin/condensing. Gas dalam kompresor yang bertekanan rendah dimampatkan/dikompresikan menjadi uap bertekanan tinggi sedemikian rupa, sehingga temperatur jenuh pengembunan (condensing saturation temperature) lebih tinggi dari temperature medium pengemburan (condensing medium temperature). Akibatnya kalor dari uap bertekanan tinggi akan mengalir ke medium pengembunan, sehingga uap refrigean akan terkondensasi.
3. Katup Ekspansi
Setelah refrigeran terkondensasi di kondensor, refrigeran cair tersebut masuk ke katup ekspansi yang mengontrol jumlah refrigeran yang masuk ke evaporator. Ada banyak jenis katup ekspansi; tiga di antaranya adalah pipa kapiler, katup ekspansi otomatis dan katup ekspansi termostatik.
a. Pipa Kapiler (capillary tube)
Katup ekspansi yang umum digunakan untuk sistem refrigerasi rumah tangga adalah pipa kapiler. Pipa kapiler adalah pipa tembaga dengan diameter lubang kecil dan panjang tertentu. Besarnya tekanan pipa kapiler bergantung pada ukuran diameter lubang dan panjang pipa kapiler. Pipa kapiler di antara kondensor dan evaporator. Refrigeran yang melalui pipa kapiler akan mulai menguap. Selanjutnya berlangsung proses penguapan yang sesungguhnya di evaporator. Jika refrigeran mengandung uap air, maka uap air akan membeku dan menyumbat pipa kapiler. Agar kotoran tidak menyumbat pipa kapiler, maka pada saluran masuk pipa kapiler dipasang saringan yang disebut strainer.
Ukuran diameter dan panjang pipa kapiler dibuat sedemikian rupa, sehingga refrigeran cair harus menguap pada akhir evaporator. Jumlah refrigeran yang berada dalam sistem juga menentukan sejauh mana refrigeran di dalam evaporator berhenti menguap, sehingga pengisian refrigeran harus cukup agar dapat menguap sampai ujung evaporator. Bila pengisian kurang, maka akan terjadi pembekuan pada sebagian evaporator. Bila pengisian berlebih, maka ada kemungkinan refrigeran cair akan masuk ke kompresor yang akan mengakibatkan rusaknya kompresor. Jadi sistem pipa kapiler mensyaratkan suatu pengisian jumlah refrigeran yang tepat.
b. Katup Ekspansi Otomatis
Sistem pipa kapiler sesuai digunakan pada sistem dengan beban tetap (konstan) seperti pada lemari es atau freezer. Tetapi dalam beberapa keadaan, untuk beban yang berubah-ubah dengan cepat harus digunakan katup ekspansi jenis lainnya. Beberapa katup ekspansi yang peka terhadap perubahan beban, antara lain adalah katup ekspansi otomatis (KEO) yang menjaga agar tekanan hisap atau tekanan evaporator besarnya tetap konstan.
Bila beban evaporator bertambah maka temperatur evaporator menjadi naik karena banyak cairan refrigeran yang menguap sehingga tekanan di dalam saluran hisap (di evaporator) akan menjadi naik pula. Akibatnya “bellow” akan bertekan ke atas hingga lubang aliran refrigeran akan menyempit dan ciran refrigeran yang masuk ke evaporator menjadi berkurang. Keadaan ini menyebabkan tekanan evaporator akan berkurang dan “bellow” akan tertekanan ke bawah sehingga katup membuka lebar dan cairan refrigeran akan masuk ke evaporator lebih banyak. Demikian seterusnya.
c. Katup Ekspansi Termostatik (KET)
Jika KEO bekerja untuk mempertahankan tekanan konstan di evaporator, maka katup ekspansi termostatik (KET) adalah satu katup ekspansi yang mempertahankan besarnya panas lanjut pada uap refrigeran di akhir evaporator tetap konstan, apapun kondisi beban di evaporator.
Cara kerja KET adalah sebagai berikut:
Jika beban bertambah, maka cairan refrigran di evaporator akan lebih banyak menguap, sehingga besarnya suhu panas lanjut di evaporator akan meningkat. Pada akhir evaporator diletakkan tabung sensor suhu (sensing bulb) dari KET tersebut. Peningkatan suhu dari evaporator akan menyebabkan uap atau cairan yang terdapat ditabung sensor suhu tersebut akan menguap (terjadi pemuaian) sehingga tekanannya meningkat. Peningkatan tekanan tersebut akan menekan diafragma ke bawah dan membuka katup lebih lebar. Hal ini menyebabkan cairan refrigeran yang berasal dari kondensor akan lebih banyak masuk ke evaporator. Akibatnya suhu panas lanjut di evaporator kembali pada keadaan normal, dengan kata lain suhu panas lanjut di evaporator dijaga tetap konstan pada segala keadaan beban.
4. Evaporator
Pada evaporator, refrigeran menyerap kalor dari ruangan yang didinginkan. Penyerapan kalor ini menyebabkan refrigeran mendidih dan berubah wujud dari cair menjadi uap (kalor/panas laten). Panas yang dipindahkan berupa :
  1. Panas sensibel (perubahan tempertaur). Temperatur refrigeran yang memasuki evaporator dari katup ekspansi harus demikian sampai temperatur jenuh penguapan (evaporator saturation temparature). Setelah terjadi penguapan, temperatur uap yang meninggalkan evaporator harus pupa dinaikkan untuk mendapatkan kondisi uap panas lanjut (super-heated vapor)
  2. Panas laten (perubahan wujud). Perpindahan panas terjadi penguapan refrigeran. Untuk terjadinya perubahan wujud, diperlukan panas laten. Dalam hal ini perubahan wujud tersebut adalah dari cair menjadi uap atau menguap (evaporasi). Refrigeran akan menyerap panas dari ruang sekelilingnya. Adanya proses perpindahan panas pada evaporator dapat menyebabkan perubahan wujud dari cair menjadi uap.
Kapasitas evaporator adalah kemampuan evaporator untuk menyerap panas dalam periode waktu tertentu dan sangat ditentukan oleh perbedaan temperatur evaporator (evaporator temperature difference). Perbedaan tempertur evaporator adalah perbedaan antara temperatur jenis evaporator (evaporator saturation temperature) dengan temperatur substansi/benda yang didinginkan. Kemampuan memindahkan panas dan konstruksi evaporator (ketebalan, panjang dan sirip) akan sangat mempengaruhi kapaistas evaporator.

  • Digg
  • Del.icio.us
  • StumbleUpon
  • Reddit
  • RSS

0 komentar:

Posting Komentar